참고링크

운영체제

프로세스와 스레드의 차이

프로세스는 실행 중인 프로그램으로 디스크로부터 메모리에 적재되어 CPU 의 할당을 받을 수 있는 것을 말한다.
운영체제로부터 주소 공간, 파일, 메모리 등을 할당받으며 이것들을 총칭하여 프로세스라고 한다.
구체적으로 살펴보면 프로세스는 함수의 매개변수, 복귀 주소와 로컬 변수와 같은 임시 자료를 갖는 프로세스 스택과 전역 변수들을 수록하는 데이터 섹션을 포함한다. 또한 프로세스는 프로세스 실행 중에 동적으로 할당되는 메모리인 을 포함한다.

프로세스 제어 블록(Process Control Block, PCB)
PCB 는 특정 프로세스에 대한 중요한 정보를 저장 하고 있는 운영체제의 자료구조이다. 운영체제는 프로세스를 관리하기 위해 프로세스의 생성과 동시에 고유한 PCB 를 생성 한다. 프로세스는 CPU 를 할당받아 작업을 처리하다가도 프로세스 전환이 발생하면 진행하던 작업을 저장하고 CPU 를 반환해야 하는데, 이때 작업의 진행 상황을 모두 PCB 에 저장하게 된다. 그리고 다시 CPU 를 할당받게 되면 PCB 에 저장되어있던 내용을 불러와 이전에 종료됐던 시점부터 다시 작업을 수행한다.

PCB 에 저장되는 정보

  • 프로세스 식별자(Process ID, PID) : 프로세스 식별번호
  • 프로세스 상태 : new, ready, running, waiting, terminated 등의 상태를 저장
  • 프로그램 카운터 : 프로세스가 다음에 실행할 명령어의 주소
  • CPU 레지스터
  • CPU 스케쥴링 정보 : 프로세스의 우선순위, 스케줄 큐에 대한 포인터 등
  • 메모리 관리 정보 : 페이지 테이블 또는 세그먼트 테이블 등과 같은 정보를 포함
  • 입출력 상태 정보 : 프로세스에 할당된 입출력 장치들과 열린 파일 목록
  • 어카운팅 정보 : 사용된 CPU 시간, 시간제한, 계정번호 등

스레드(Thread)
스레드는 프로세스의 실행 단위라고 할 수 있다. 한 프로세스 내에서 동작되는 여러 실행 흐름으로 프로세스 내의 주소 공간이나 자원을 공유할 수 있다. 스레드는 스레드 ID, 프로그램 카운터, 레지스터 집합, 그리고 스택으로 구성된다. 같은 프로세스에 속한 다른 스레드와 코드, 데이터 섹션, 그리고 열린 파일이나 신호와 같은 운영체제 자원들을 공유한다. 하나의 프로세스를 다수의 실행 단위로 구분하여 자원을 공유하고 자원의 생성과 관리의 중복성을 최소화하여 수행 능력을 향상시키는 것을 멀티스레딩이라고 한다. 이 경우 각각의 스레드는 독립적인 작업을 수행해야 하기 때문에 각자의 스택과 PC 레지스터 값을 갖고 있다.

스택을 스레드마다 독립적으로 할당하는 이유

스택은 함수 호출 시 전달되는 인자, 되돌아갈 주소값 및 함수 내에서 선언하는 변수 등을 저장하기 위해 사용되는 메모리 공간이므로 스택 메모리 공간이 독립적이라는 것은 독립적인 함수 호출이 가능하다는 것이고 이는 독립적인 실행 흐름이 추가되는 것이다. 따라서 스레드의 정의에 따라 독립적인 실행 흐름을 추가하기 위한 최소 조건으로 독립된 스택을 할당한다.

PC Register 를 스레드마다 독립적으로 할당하는 이유

PC 값은 스레드가 명령어의 어디까지 수행하였는지를 나타나게 된다. 스레드는 CPU 를 할당받았다가 스케줄러에 의해 다시 선점당한다. 그렇기 때문에 명령어가 연속적으로 수행되지 못하고 어느 부분까지 수행했는지 기억할 필요가 있다. 따라서 PC 레지스터를 독립적으로 할당한다.

멀티 스레드

장점
프로세스를 이용하여 동시에 처리하던 일을 스레드로 구현할 경우 메모리 공간과 시스템 자원 소모가 줄어들게 된다. 스레드 간의 통신이 필요한 경우에도 별도의 자원을 이용하는 것이 아니라 전역 변수의 공간 또는 동적으로 할당된 공간인 Heap 영역을 이용하여 데이터를 주고받을 수 있다. 그렇기 때문에 프로세스 간 통신 방법에 비해 스레드 간의 통신 방법이 훨씬 간단하다.
심지어 스레드의 context switch 는 프로세스 context switch 와는 달리 캐시 메모리를 비울 필요가 없기 때문에 더 빠르다.
따라서 시스템의 throughtput 이 향상되고 자원 소모가 줄어들며 자연스럽게 프로그램의 응답 시간이 단축된다.
이러한 장점 때문에 여러 프로세스로 할 수 있는 작업들을 하나의 프로세스에서 스레드로 나눠 수행하는 것이다.

힙(Heap) : 영역 필요에 의해 동적으로 메모리를 할당 할 때 사용

문제점
멀티 프로세스 기반으로 프로그래밍할 때는 프로세스 간 공유하는 자원이 없기 때문에 동일한 자원에 동시에 접근하는 일이 없었지만 멀티 스레딩을 기반으로 프로그래밍할 때는 이 부분을 신경써줘야 한다.
서로 다른 스레드가 데이터와 힙 영역을 공유하기 때문에 어떤 스레드가 다른 스레드에서 사용중인 변수나 자료구조에 접근하여 엉뚱한 값을 읽어오거나 수정할 수 있다.

그렇기 때문에 멀티스레딩 환경에서는 동기화 작업이 필요하다.
동기화를 통해 작업 처리 순서를 컨트롤 하고 공유 자원에 대한 접근을 컨트롤 하는 것이다.
하지만 이로 인해 병목현상이 발생하여 성능이 저하될 가능성이 높다.
그러므로 과도한 락으로 인한 병목현상을 줄여야 한다.

멀티 스레드 vs 멀티 프로세스
멀티 스레드는 멀티 프로세스보다 적은 메모리 공간을 차지하고 문맥 전환이 빠르다는 장점이 있지만, 오류로 인해 하나의 스레드가 종료되면 전체 스레드가 종료될 수 있다는 점과 동기화 문제를 안고 있다.
반면 멀티 프로세스 방식은 하나의 프로세스가 죽더라도 다른 프로세스에는 영향을 끼치지 않고 정상적으로 수행된다는 장점이 있지만, 멀티 스레드보다 많은 메모리 공간과 CPU 시간을 차지한다는 단점이 존재한다.

이 두 가지는 동시에 여러 작업을 수행한다는 점에서 같지만 적용해야 하는 시스템에 따라 적합/부적합이 구분된다. 따라서 대상 시스템의 특징에 따라 적합한 동작 방식을 선택하고 적용해야 한다.

DeadLock(교착상태)

교착상태(Dead Lock)은 상호 배제에 의해 나타나는 문제점으로, 둘 이상의 프로세스들이 자원을 점유한 상태에서 서로 다른 프로세스가 점유하고 있는 자원을 요구하며 무한정 기다리는 현상을 의미합니다.

교착상태 필요 충분조건

이유 설명
상호배제(Mutual Exclusion) 한번에 한개의 프로세스만이 공유 자원을 사용할 수 있어야 합니다.
점유와 대기(Hold and Wait) 최소한 하나의 자원을 점유하고 있으면서 다른 프로세스에 할당되어 사용되고 있는 자원을 추가로 점유하기 이해 대기하는 프로세스가 있어야 합니다.
비선점(Non-preemption) 다른 프로세스에 할당된 자원은 사용이 끝날 때까지 강제로 빼앗을 수 없어야합니다.
환형 대기(Circular Wiat) 공유자원과 공유자원을 사용하기 위해 대기하는 프로세스들이 원형으로 구성되어 있어 자신에게 할당된 자원을 점유하면서 앞이나 뒤에 있는 프로세스의 자원을 요구해야 합니다.

예방기법(Prevention)

교착상태 예방 기법은 교착상태가 발생하지 않도록 사전에 시스템을 제어하는 방법으로 교착상태 발생의 네가지 조건 중에서 어느 하나를 제거함으로써 수행됩니다. 자원 낭비가 가장 심한 기법입니다.

  • 상호 배제(Mutual Exclusion)부정 : 한번에 여러개의 프로세스가 공유 자원을 사용할 수 있도록 합니다.
  • 점유 및 대기(Hold and Wait) 부정 : 프로세스가 실행되기 전 필요한 모든 자원을 할당하여 프로세스 대기를 없애거나 자원이 점유되지 않은 상태에서만 자원을 요구하도록 합니다.
  • 비선점(Non-preemption)부정 : 자원을 점유하고 있는 프로세스가 다른 자원을 요구할 때 점유하고 있는 자원을 반납하고, 요구한 자원을 사용하기 위해 기다리게 합니다.
  • 환형 대기(Circular Wait)부정 : 자원을 선형 순서로 분류하여 고유 번호를 할당하고, 각 프로세스는 현재 점유한 자원의 고유 번호보다 앞이나 뒤 어느 한쪽 방향으로만 자원을 요구하도록 하는것입니다.

회피 기법(Avoidance)

교착상태 회피 기법은 교착상태가 발생할 가능성을 배제하지 않고 교착상태가 발생하면 적절히 피해나가는 방법으로, 주로 은행원 알고리즘(Banker’s Algorithm)이 사용됩니다.

은행원 알고리즘

  1. 은행원 알고리즘은 다익스트라가 제안한 기법으로, 은행에서 모든 고객의 요구가 충족되도록 현금을 할당하는데서 유래한 기법입니다.
  2. 각 프로세스에게 자원을 할당하여 교착상태가 발생하지 않으며 모든 프로세스가 완료될 수 있는 상태를 안전상태, 교착상태가 발생할 수 있는 상태를 불안전 상태라고 합니다.
  3. 은행원 알고리즘을 적용하기 위해서는 자원의 양과 사용자(프로세스) 수가 일정해야 합니다.
  4. 은행원 알고리즘은 프로세스의 모든 요구를 유한한 시간안에 할당하는 것을 보장합니다.

발견기법(Detection)

교착상태 발견 기법은 시스템에 교착상태가 발생했는지 점검하여 교착상태에 있는 프로세스와 자원을 발견하는 것을 의미합니다.

  1. 교착상태 발견 알고리즘과 자원 할당 그래프 등을 사용 할 수 있습니다.

회복기법(Recovery)

교착상태 회복 기법은 교착상태를 일으킨 프로세스를 종료하거나 교착상태의 프로세스에 할당된 자원을 선점하여 프로세스나 자원을 회복하는 것을 의미합니다.

프로세스 종료

교착상태에 있는 프로세스를 종료하는 것으로, 교착상태에 있는 모든 프로세스를 종료하는 방법과 교착상태에 있는 프로세스들을 하나씩 종료해가며 교착상태를 해결하는 방법이 있습니다.

자원선점

교착상태의 프로세스가 점유하고 있는 자원을 선점하여 다른 프로세스에게 할당하며, 해당 프로세스를 일시 정지시키는 방법입니다. 우선순위가 낮은 프로세스, 수행된 정도가 적은 프로세스, 사용되는 자원이 적은 프로세스 등을 위주로 해당 프로세스의 자원을 선점합니다.

※ 자원 선점시 고려사항

  1. 자원 을 선점할 프로세스 선택 문제 : 최소의 피해를 줄 수 있는 프로세스를 선택합니다.
  2. 자원을 선점한 프로세스의 복귀 문제 : 자원이 부족한 상태이므로 대부분 일시 중지시키고 다시 시작하는 방법을 사용합니다.
  3. 기아 현상 문제 : 한 프로세스가 계속하여 자원 선점 대상이 되지 못하도록 고려해야 합니다.